AB_logo
logo-black
  • About
  • Science
    • Health & Wellness
    • Life Sciences
    • Materials Science
  • Human Health
  • Speaking
  • Media
  • Blog
Hit enter to search or ESC to close

Biofield Treatment: An Effective Strategy for Modulating the Physical and Thermal Properties of O-Nitrophenol, M-Nitrophenol and P-Tertiary Butyl Phenol

By Trivedi Effect
September 11, 2015

Journal: Bioanalysis & Biomedicine PDF  

Published: 11-Sep-15 Volume: 7 Issue: 5 Pages: 156-163

DOI: 10.4172/1948-593X.1000137 ISSN: 1948-593X

Authors: Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Rakesh K Mishra and Snehasis Jana*

Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Biofield Treatment: An Effective Strategy for Modulating the Physical and Thermal Properties of O-Nitrophenol, M-Nitrophenol and P-Tertiary Butyl Phenol. J Bioanal Biomed 7: 156-163. doi:10.4172/1948- 593X.1000137

 

Download Article

 

Abstract

Phenolic compounds are commonly used for diverse applications such as in pharmaceuticals, chemicals, rubber, dyes and pigments. The objective of present research was to study the impact of Mr. Trivedi’s biofield treatment on physical and thermal properties of phenol derivatives such as o-nitrophenol (ONP), m-nitrophenol (MNP) and p-tertiary butyl phenol (TBP). The study was performed in two groups (control and treated). The control and treated compounds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and surface area analysis. XRD analysis showed increase in crystallite size by 16.05% in treated ONP as compared to control. However, the treated MNP showed decrease in crystallite size by 16.17% as compared to control. The treated TBP showed increase in crystallite size by 5.20% as compared to control. DSC of treated MNP exhibited increase in melting temperature with respect to control, which may be correlated to higher thermal stability of treated sample. However, the treated TBP exhibited no significant change in melting temperature with respect to control. TGA analysis of treated ONP and TBP showed an increase in maximum thermal decomposition temperature (Tmax) as compared to control. However, the treated MNP showed slight decrease in Tmax in comparison with control sample. Surface area analysis of treated ONP showed decrease in surface area by 65.5%. However, surface area was increased by 40.7% in treated MNP as compared to control. These results suggest that biofield treatment has significant effect on physical and thermal properties of ONP, MNP and TBP.

Conclusion

This research work evaluated the influence of biofield treatment on physical and thermal properties of phenolic compounds such as ONP, MNP and TBP. XRD study revealed increase in crystallite size of the treated ONP and TBP as compared to control. However, the treated MNP showed a decrease in crystallite size with respect to control. The treated MNP showed increase in melting as compared to control sample. However, TBP did not show a significant change in melting temperature. TGA analysis showed the enhanced thermal stability of the treated ONP and TBP as compared to control. However, no significant change in thermal stability of treated MNP was observed with respect to control. Overall, the results showed that biofield treatment has the significant impact on physical and thermal properties of the ONP, MNP and TBP.

 

 

All posts
About Author
Trivedi Effect

SUBMIT YOUR COMMENT

Subscribe

Subscribe to our newsletter & stay updated

About

Alice is helping shatter the world view that Life Force can only be harnessed by demonstrating that Life Force can also be transmitted to any living organism or infused and stored in any material anywhere in the world through thought intention.
The most sophisticated, rigorous and internationally accepted models of scientific research are validating ..

Read More >>

Address
  10624 S Eastern Avenue Suite A-969 Henderson, NV 89052
  alice@alicebranton.com
Copyright 2025 Alice Branton. All Rights Reserved. | T&C*