AB_logo
logo-black
  • About
  • Science
    • Health & Wellness
    • Life Sciences
    • Materials Science
  • Human Health
  • Speaking
  • Media
  • Blog
Hit enter to search or ESC to close

Evaluation of Atomic, Physical, and Thermal Properties of Bismuth Oxide Powder: An Impact of Biofield Energy Treatment

By Trivedi Effect
November 09, 2015

Journal: American Journal of Nano Research and Applications PDF  

Published: 09-Nov-15 Volume: 3 Issue: 6 Pages: 94-98

DOI: 10.11648/j.nano.20150306.11 ISSN: Not Available

Authors: Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Omprakash Latiyal, Snehasis Jana

Citation: Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Omprakash Latiyal, Snehasis Jana. Evaluation of Atomic, Physical, and Thermal Properties of Bismuth Oxide Powder: An Impact of Biofield Energy Treatment. American Journal of Nano Research and Applications. Vol. 3, No. 6, 2015, pp. 94-98. doi: 10.11648/j.nano.20150306.11

 

Download Article

 

Abstract

Bismuth oxide (Bi2O3) is known for its application in several industries such as solid oxide fuel cells, optoelectronics, gas sensors and optical coatings. The present study was designed to evaluate the effect of biofield energy treatment on the atomic, physical, and thermal properties of Bi2O3. The Bi2O3 powder was equally divided into two parts: control and treated. The treated part was subjected to biofield energy treatment. After that, both control and treated samples were investigated using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, and electron spin resonance (ESR) spectroscopy. The XRD data exhibited that the biofield treatment has altered the lattice parameter (-0.19%), unit cell volume (-0.58%), density (0.59%), and molecular weight (-0.57%) of the treated sample as compared to the control. The crystallite size was significantly increased by 25% in treated sample as compared to the control. Furthermore, TGA analysis showed that control and treated samples were thermally stable upto tested temperature of 831°C. Besides, the FT-IR analysis did not show any significant change in absorption wavenumber in the treated sample as compared to the control. The ESR study revealed that g-factor was increased by 13.86% in the treated sample as compared to the control. Thus, above data suggested that biofield energy treatment has altered the atomic and physical properties of Bi2O3. Therefore, the biofield treated Bi2O3 could be more useful in solid oxide fuel cell industries.

Conclusion

The XRD data revealed that the lattice parameter was reduced in treated sample as compared to the control. The decrease in lattice parameter may lead to enhance the stability of ?- phase of Bi2O3 in treated sample as compared to the control. Also, the increase in crystallite size upto 25% suggest that the ionic conductivity of treated Bi2O3 might increase after biofield treatment. The TGA study showed the stability of control and treated Bi2O3 samples upto the tested temperature of 900°C. Besides, the ESR spectra study revealed that the signal width and height were significantly increased by 311.1 and 1188.9% respectively, as compared to the control. Thus, overall study concludes that biofield treatment has altered the atomic and physical properties of Bi2O3. Therefore, the treated Bi2O3 could be more beneficial in solid oxide fuel cell as compared to the control.

 

 

 

All posts
About Author
Trivedi Effect

SUBMIT YOUR COMMENT

Subscribe

Subscribe to our newsletter & stay updated

About

Alice is helping shatter the world view that Life Force can only be harnessed by demonstrating that Life Force can also be transmitted to any living organism or infused and stored in any material anywhere in the world through thought intention.
The most sophisticated, rigorous and internationally accepted models of scientific research are validating ..

Read More >>

Address
  10624 S Eastern Avenue Suite A-969 Henderson, NV 89052
  alice@alicebranton.com
Copyright 2025 Alice Branton. All Rights Reserved. | T&C*