Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano Powders after Bio field Treatment

Journal: Industrial Engineering & Management PDF

Published: 17-Jun-15 Volume: 4 Issue: 3

DOI:10.4172/2169-0316.1000161 ISSN: 2169-0316

Authors: Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil*, Rama Mohan Tallapragada and Omprakash Latiyal

Abstract

Transition metal oxides (TMOs) have been known for their extraordinary electrical and magnetic properties. In the present study, some transition metal oxides (Zinc oxide, iron oxide and copper oxide) which are widely used in the fabrication of electronic devices were selected and subjected to biofield treatment. The atomic and crystal structures of TMOs were carefully studied by Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) studies. XRD analysis reveals that biofield treatment significantly changed the lattice strain in unit cells, crystallite sizes and densities in ceramics oxide powders. The computed molecular weight of the treated samples exhibited significant variation. FT-IR spectra indicated that biofield treatment has altered the metal-oxygen bond strength. Since biofield treatment significantly altered the crystallite size, lattice strain and bond strength, we postulate that electrical and magnetic properties in TMOs (transition metal oxides) can be modulated by biofield treatment.

Impact of Biofield Treatment on Physical, Structural and Spectral Properties of Antimony Sulfide

Journal: Industrial Engineering & Management PDF

Published: 17-Jul-15 Volume: 4 Issue: 3

DOI:10.4172/2169-0316.1000165 ISSN: 2169-0316

Authors: Trivedi MK, Nayak G, Patil S*, Tallapragada RM and Latiyal O

Abstract

Antimony sulfide (Sb2S3) has gained extensive attention in solar cells due to their potential as a low-cost and earth abundant absorber material. In solar cell absorber, the optoelectrical properties such as energy band gap and absorption coefficient of Sb2S3 play an important role, which have strong relationships with their crystal structure, lattice parameter and crystallite size.

Hence in the present investigation, Sb2S3 powder samples were exposed to biofield treatment, and further its physical, structural and spectral properties are investigated. The particle size analysis showed larger particle size and surface area after treatment. X-ray diffraction (XRD) analysis revealed polycrystalline orthorhombic structure with superior crystallinity in treated Sb2S3 along with significant changes in the lattice parameters, which led to changes in unit cell volume and density. XRD data analysis indicates that crystallite size was increased by around 150% in treated sample. In FT-IR spectra, strong absorption band was observed at 400-700cm-1, which confirms the presence of Sb2S3. Further, the absorption peak intensity in IR spectra was significantly reduced after treatment that was probably due to change in metal sulphur dipolar interaction.

Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powder

Journal: Industrial Engineering & Management PDF

Published: 06-Aug-15 Volume: 4 Issue: 3

DOI:10.4172/2169-0316.1000166 ISSN: 2169-0316

Authors: Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O and Jana S*

Abstract

Barium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR) and Electron spin resonance (ESR). The XRD analysis showed the permanent compressive strain of 0.45% in treated barium titanate powder as compared to control. Furthermore, the biofield treatment had enhanced the density upto 1.38% in barium titanate as compared to control. The FT-IR spectra showed that the stretching and bending vibrations of Ti-O bond in treated BaTiO3 were shifted towards lower frequency as compared to control. The bond length was substantially increased by 0.72 % in treated BaTiO3 as compared to control. The ESR spectra of control and treated BaTiO3 sample showed the g-factor of 2.0;and biofield treatment has substantially changed the width and height of ESR signal in treated BaTiO3 as compared to control. These observations revealed that biofield treatment has significantly altered the crystal structure, lattice strain,and bond vibration of barium titanate.

Spectroscopic Characterization of Chloramphenicol and Tetracycline: An Impact of Biofield Treatment

Journal: Pharmaceutica Analytica Acta PDF

Published: 24-Jun-15 Volume: 6 Issue: 7

DOI:10.4172/2153-2435.1000395 ISSN: 2153-2435

Authors: Mahendra Kumar Trivedi, Shrikant Patil, Harish Shettigar, Khemraj Bairwa and Snehasis Jana*

Abstract

Objective: Chloramphenicol and tetracycline are broad-spectrum antibiotics and widely used against variety of microbial infections. Nowadays, several microbes have acquired resistance to chloramphenicol and tetracycline. The present study was aimed to evaluate the impact of biofield treatment for spectroscopic characterization of chloramphenicol and tetracycline using FT-IR and UV-Vis spectroscopy.

Methods:The study was performed in two groups (control and treatment) of each antibiotic. The control groups remained as untreated, and biofield treatment was given to treatment groups.

Results: FT-IR spectrum of treated chloramphenicol exhibited the decrease in wavenumber of NO2 from 1521 cm-1 to 1512 cm-1 and increase in wavenumber of C=O from 1681 cm-1 to 1694 cm-1 in acylamino group. It may be due to increase of conjugation effect in NO2 group, and increased force constant of C=O bond. As a result, stability of both NO2 and C=O groups might be increased in treated sample as compared to control. FT-IR spectrum of treated tetracycline showed the downstream shifting of aromatic C-H stretching from 3085-3024 cm-1 to 3064-3003 cm-1 and C=C stretching from 1648-1582 cm-1 to 1622-1569 cm-1 and up shifting of C-N stretching from 965 cm-1 to 995 cm-1. It may be due to enhanced conjugation effect in tetracycline, and increased force constant of C-N (CH3) bond of tetracycline as compared to control. The results indicated the enhanced stability of treated tetracycline as compared to control. UV-Vis spectra of biofield treated chloramphenicol and tetracycline showed the similar lambda max (?max) to their respective control. It revealed that the chromophore groups of both antibiotics remained same as control after the biofield treatment.

Conclusion: Based on FT-IR spectroscopic data, it is speculated that due to increase in bond strength and conjugation effect after biofield treatment, the chemical stability of both the drugs might be increased as compared to control.

Influence of Biofield Treatment on Physicochemical Properties of Hydroxyethyl Cellulose and Hydroxypropyl Cellulose

Journal: Journal of Molecular Pharmaceutics & Organic Process Research PDF

Published: 20-Jul-15 Volume: 3 Issue: 2

DOI:10.4172/2329-9053.1000126 ISSN: 2329-9053

Authors: Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil*, Rama Mohan Tallapragada and Rakesh Mishra

Abstract

Cellulose based polymers have shown tremendous potential as drug delivery carrier for oral drug delivery system (DDS). Hydroxyethyl cellulose (HEC) and hydroxypropyl cellulose (HPC) are widely explored as excipients to improve the solubility of poorly water soluble drugs and to improve self-life of dosage form. This work is an attempt to modulate the physicochemical properties of these cellulose derivatives using biofield treatment. The treated HEC and HPC polymer were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The XRD studies revealed a semi-crystalline nature of both the polymers. Crystallite size was computed using Scherrer’s formula, and treated HEC polymer showed a significant increase in percentage crystallite size (835%) as compared to the control polymer. This higher increase in crystallite size might be associated with greater crystallite indices causing a reduction in amorphous regions in the polymer. However treated HPC polymer showed decrease in crystallite size by -64.05% as compared to control HPC. DSC analysis on HEC polymer revealed the presence of glass transition temperature in control and treated HEC polymer. We observed an increase in glass transition temperature in treated HEC, which might be associated with restricted segmental motion induced by biofield. Nonetheless, HPC has not showed any glass transition. And no change in melting temperature peak was observed in treated HPC (T2) however melting temperature was decreased in T1 as compared to control HPC. TGA analysis established the higher thermal stability of treated HEC and HPC. CHNSO results showed significant increase in percentage oxygen and hydrogen in HEC and HPC polymers as compared to control samples. This confirmed that biofield had induced changes in chemical nature and elemental composition of the treated polymers (HEC and HPC).

Evaluation of Biofield Treatment on Physical, Atomic and Structural Characteristics of Manganese (II, III) Oxide

Journal: Material Science & Engineering PDF

Published: 04-Jul-15 Volume: 4 Issue: 4

DOI:10.4172/2169-0022.1000177 ISSN: 2169-0022

Authors: Trivedi MK, Nayak G, Patil S*, Tallapragada RM and Latiyal O

Abstract

In Mn3O4, the crystal structure, dislocation density, particle size and spin of the electrons plays crucial role in modulating its magnetic properties. Present study investigates impact of Biofield treatment on physical and atomic properties of Mn3O4. X-ray diffraction revealed the significant effect of biofield on lattice parameter, unit cell volume, molecular weight, crystallite sizes and densities of treated Mn3O4. XRD analysis confirmed that crystallinity was enhanced and dislocation density was effectively reduced by 80%. FTIR spectroscopic analysis revealed that Mn-O bond strength was significantly altered by biofield treatment. Electronic spin resonance analysis showed higher g-factor of electron in treated Mn3O4 as compared to control, along with altered spin-spin atomic interaction of Mn with other mixed valance states. Additionally, ESR study affirmed higher magnetization behaviour of the treated Mn3O4. The results demonstrated that treated Mn3O4 ceramic could be used as an excellent material for fabrication of novel magnetic data storage devices.

Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam

Journal: Chemical Sciences Journal PDF

Published: 13-Jul-15 Volume: 6 Issue: 3

DOI:10.4172/2150-3494.100098 ISSN: 2150-3494

Authors: Trivedi MK, Patil S, Shettigar H, Bairwa K and Jana S *

Abstract

Paracetamol and piroxicam are non-steroidal anti-inflammatory drugs (NSAIDs), widely used in pain and inflammatory diseases. The present study aimed to evaluate the impact of biofield treatment on spectral properties of paracetamol and piroxicam. The study was performed in two groups (control and treatment) of each drug. The control groups remained as untreated, and biofield treatment was given to treatment groups. Subsequently, spectral properties of both drugs before and after biofield treatment were characterized using FT-IR and UV-Vis spectroscopic techniques. FT-IR data of paracetamol showed N-H amide II bending peak in biofield treated paracetamol, which was shifted to lower wavenumber (1565 to 1555 cm-1)as compared to control. Further, the intensity of vibrational peaks in the range of 1171-965 cm-1 (C-O and C-N stretching) were increased in treated sample of paracetamol as compared to control. Similarly, the FT-IR data of piroxicam (treated) showed increased intensity of vibrational peaks at 1628 (amide C=O stretching), 1576-1560 cm-1(C=C stretching) with respect to control peaks. Furthermore, vibrational peak of C=N stretching (1467 cm-1) was observed in biofield treated piroxicam. This peak was not observed in control sample, possibly due to its low intensity. Based on FT-IR data, it is speculated that bond length and dipole moment of some bonds like N-H (amide), C-O, and C-N in paracetamol and C=O (amide), C=N, and C=C in piroxicam might be changed due to biofield treatment. The UV spectrum of biofield treated paracetamol showed the shifting in wavelength of UV absorption as 243?248.2 nm and 200?203.4 nm as compared to control. Likely, the lambda max (?max) of treated piroxicam was also shifted as 328 ?345.6 nm, 241?252.2 nm, and 205.2?203.2 nm as compared to control.Overall results showed an impact of biofield treatment on the spectral properties of paracetamol and piroxicam.

An Impact of Biofield Treatment on Spectroscopic Characterization of Pharmaceutical Compounds

Journal: Modern Chemistry & Applications PDF

Published: 04-Aug-15 Volume: 3 Issue: 3

DOI:10.4172/2329-6798.1000159 ISSN: 2329-6798

Authors: Mahendra Kumar Trivedi, Shrikant Patil, Harish Shettigar, Ragini Singh and Snehasis Jana*

Abstract

The stability of any pharmaceutical compound is most desired quality that determines its shelf life and effectiveness.The stability can be correlated to structural and bonding properties of compound and any variation arise in these properties can be easily determined by spectroscopic analysis. The present study was aimed to evaluate the impact of biofield treatment on these properties of four pharmaceutical compounds such as urea, thiourea, sodium carbonate,and magnesium sulphate, using spectroscopic analysis. Each compound was divided into two groups, referred as control and treatment. The control groups remained as untreated and treatment group of each compound received Mr. Trivedi’s biofield treatment. Control and treated samples of each compound were characterized using Fourier-Transform Infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopy. FT-IR spectra of biofield treated urea showed the shifting of C=O stretching peak towards lower frequency (1684?1669 cm-1) and N-H stretching peak towards higher frequency (3428?3435 cm-1) with respect to control. A shift in frequency of C-N-H bending peak was also observed in treated sample as compared to control i.e. (1624?1647 cm-1). FT-IR spectra of thiourea showed upstream shifting of NH2 stretching peak (3363?3387 cm-1) as compared to control, which may be due to decrease in N-H bond length. Also, the change in frequency of N-C-S bending peak (621?660 cm-1) was observed in treated thiourea that could be due to some changes in bond angle after biofield treatment. Similarly, treated sample of sodium carbonate showed decrease in frequency of C-O bending peak (701?690 cm-1) and magnesium sulphate showed increase in frequency of S-O bending peak (621?647 cm-1) as compared to control, which indicated that bond angle might be altered after biofield treatment on respective samples. UV-Vis spectra of biofield treated urea showed shift in lambda max (?max) towards higher wavelength (201?220 nm) as compared to control sample, whereas other compounds i.e. thiourea, sodium carbonate, and magnesium sulphate showed the similar ?max to their respective control. These findings conclude that biofield treatment has significant impact on spectral properties of tested pharmaceutical compounds which might be due to some changes happening at atomic level of compounds, and leading to affect the bonding and structural properties of compounds.

Effect of Biofield Treatment on Structural and Morphological Properties of Silicon Carbide

Journal: Powder Metallurgy & Mining PDF

Published: 07-Jul-15 Volume: 4 Issue: 1

DOI:10.4172/2168-9806.1000132 ISSN: 2168-9806

Authors: Trivedi MK, Nayak G, Tallapragada RM, Patil S, Latiyal O and Jana S *

Abstract

Silicon carbide (SiC) is a well-known ceramic due to its excellent spectral absorbance and thermo-mechanical properties. The wide band gap, high melting point and thermal conductivity of SiC is used in high temperature applications. The present study was undertaken to investigate the effect of biofield treatment on physical, atomic, and structural characteristics of SiC powder. The control and biofield treated SiC powder was analysed using X-ray diffraction (XRD), particle size analyzer, surface area analyzer, and Fourier transform infrared (FT-IR) spectroscopy techniques with respect to control. The XRD pattern revealed that crystallite size was significantly increased by 40% in treated SiC as compared to control. The biofield treatment has induced changes in lattice parameter, density and molecular weight of atoms in the SiC powder. Particle size was increased upto 2.4% and the surface area was significantly reduced by 71.16% in treated SiC as compared to control. The FT-IR results indicated that the stretching vibrations frequency of silicon-carbon bond in treated SiC (925 cm-1) was shifted towards lower frequency as compared to control (947 cm-1). These findings suggest that biofield treatment has substantially altered the physical and structural properties of SiC powder.

Influence of Biofield Treatment on Physical, Structural and Spectral Properties of Boron Nitride

Journal: Material Science & Engineering PDF

Published: 23-Jul-15 Volume: 4 Issue: 4

DOI:10.4172/2169-0022.1000181 ISSN: 2169-0022

Authors: Trivedi MK, Patil S, Nayak G, Jana S * and Latiyal O

Abstract

Boron nitride (BN) is known for high hardness, thermal stability, thermal conductivity, and catalytic action. The aim of this study was to investigate the effect of biofield treatment on physical, structural and spectral properties of BN powder. The control and treated sample of BN powder were characterized by X-ray diffraction (XRD), surface area analysis and Fourier transform infrared spectroscopy (FT-IR). XRD results indicated that biofield treatment had substantially changed the crystallinity of BN powder as compared to control. Apart from the crystallinity, significant changes were also observed in lattice parameter, density and molecular weight of the treated BN powder as compared to control sample. The XRD data confirmed 33.30% increase crystallite size in treated BN powder as compared to control. The surface area data showed 10.33% increment in surface area of treated BN as compared to control. Furthermore, FT-IR spectra revealed that some part of BN may be transformed from hexagonal BN (h-BN) to rhombohedral boron nitride (r-BN), which was corroborated by emergence of new prominent peaks at 1388 cm-1 in treated BN as compared to control sample. These findings suggest that biofield treatment has substantially altered the structural properties and surface area of treated BN powder.

An Evaluation of Biofield Treatment on Thermal, Physical and Structural Properties of Cadmium Powder

Journal: Thermodynamics & Catalysis PDF

Published: 04-Aug-15 Volume: 6 Issue: 2

DOI:10.4172/2157-7544.1000147 ISSN: 2157-7544

Authors: Mahendra Kumar Trivedi, Gopal Nayak , Shrikant Patil , Rama Mohan Tallapragada , Omprakash Latiyal , and Snehasis Jana

Abstract

Cadmium is widely utilized in nickel-cadmium batteries, stabilizers, and coating applications due to its versatile physico-chemical properties. The aim of present study was to evaluate the impact of biofield treatment on atomic, thermal, and physical properties of cadmium powder. The cadmium powder was divided into two groups, one group as control and another group as treated. The treated group received Mr. Trivedi’s biofield treatment. Control and treated samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), particle size analyzer, surface area analyzer, and scanning electron microscopy (SEM). XRD results showed significant alteration in lattice parameter, unit cell volume, densities, nuclear charge per unit volume, and atomic weight in treated cadmium powder as compared to control. Furthermore, crystallite size was significantly reduced upto 66.69% in treated cadmium as compared to control. DSC analysis results showed that the latent heat of fusion of the treated cadmium powder was considerably reduced by 16.45% as compared to control. Particle size data revealed that average particle size (d50) of treated cadmium powder was significantly reduced by 47.79 % as compared to the control. In addition, the surface area of treated cadmium powder was substantially enhanced by 156.36% as compared to control. Surface morphology observed by SEM showed the more facets and fractured surface with satellite boundaries in treated cadmium powder as compared to control. These findings suggest that biofield treatment has significantly altered the atomic, thermal and physical properties of cadmium.

Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment

Journal: Powder Metallurgy & Mining PDF

Published: 18-Aug-15 Volume: 4 Issue: 1

DOI:10.4172/2168-9806.1000128 ISSN: 2168-9806

Authors: Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Omprakash Latiyal, and Snehasis Jana *

Abstract

Chromium (VI) oxide (CrO3) has gained extensive attention due to its versatile physical and chemical properties. The objective of the present study was to evaluate the impact of biofield treatment on physical, thermal and structural properties of CrO3 powder. In this study, CrO3 powder was divided into two parts i.e. control and treatment. Control part was remained as untreated and treated part received Mr. Trivedi’s biofield treatment. Subsequently, control and treated CrO3 samples were characterized using Thermo gravimetric analysis-differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). DTA showed that the melting point of treated CrO3 was increased upto 212.65°C (T3) as compared to 201.43°C in control. In addition, the latent heat of fusion was reduced upto 51.70% in treated CrO3 as compared to control. TGA showed the maximum thermal decomposition temperature (Tmax) around 330°C, was increased upto 340.12°C in treated CrO3 sample. XRD data revealed that lattice parameter and unit cell volume of treated CrO3 samples were reduced by 0.25 and 0.92% respectively, whereas density was increased by 0.93% in treated CrO3 sample as compared to control. The crystallite size of treated CrO3 was increased from 46.77 nm (control) to 60.13 nm after biofield treatment. FT-IR spectra showed the absorption peaks corresponding to Cr=O at 906 and 944 cm-1 in control, which were increased to 919 and 949 cm¬1 in treated CrO3 after biofield treatment. Overall, these results suggest that biofield treatment has substantially altered the physical, thermal and structural properties of CrO3 powder.

Characterization of Physical and Structural Properties of Brass Powder After Biofield Treatment

Journal: Powder Metallurgy & Mining PDF

Published: 27-Jul-15 Volume: 4 Issue: 1

DOI:10.4172/2168-9806.1000134 ISSN: 2168-9806

Authors: Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O and Jana S *

Abstract

Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. The aim of present study was to evaluate the effect of biofield treatment on structural and physical properties of brass powder. The brass powder sample was divided into two parts: control and treated. The treated part was subjected to Mr.Trivedi’s biofield treatment. Control and treated brass powder were characterized using particle size analyser, X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared (FT-IR) spectroscopy. The result showed that the average particle size, d50and d99 (size below which 99% particles were present) were reduced up to 44.3% and 56.4%, respectively as compared to control. XRD result revealed that the unit cell volume in treated brass powder was increased up to 0.19% as compared to control. Besides, the crystallite size of brass powder was significantly increased up to 100.5% as compared to control, after biofield treatment. Furthermore, SEM microscopy showed welded particles in control powder, however fractured surfaces were observed in treated sample. In FT-IR spectra, new peak at 685 cm-1 was observed after biofield treatment as compared to control that might be due to alteration in bonding properties in treated brass sample. These findings suggest that the biofield treatment has significantly altered the physical and structural properties of brass powder.

Biofield Treatment: A Potential Strategy for Modification of Physical and Thermal Properties of Indole

Journal: Journal of Environmental Analytical Chemistry PDF

Published: 10-Aug-15 Volume: 2 Issue: 4

DOI:10.4172/2380-2391.1000152 ISSN: 2380-2391

Authors: Mahendra Kumar T, Rama Mohan T, Alice Branton, Dahryn Trivedi, Gopal Nayak, Rakesh K Mishra, and Snehasis Jana*

Abstract

Indole compounds are important class of therapeutic molecules, which have excellent pharmaceutical applications. The objective of present research was to investigate the influence of biofield treatment on physical and thermal properties of indole. The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The control and treated samples were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy and ultraviolet-visible (UV-Vis) spectroscopy. XRD study demonstrated the increase in crystalline nature of treated indole as compared to control. Additionally, the treated indole showed increase in crystallite size by 2.53% as compared to control. DSC analysis of treated indole (54.45ºC) showed no significant change in melting temperature (Tm) in comparison with control sample (54.76ºC). A significant increase in latent heat of fusion (?H) by 30.86% was observed in treated indole with respect to control. Derivative thermogravimetry (DTG) of treated indole showed elevation in maximum thermal decomposition temperature (Tmax) 166.49ºC as compared to control (163.37ºC). This was due to increase in thermal stability of indole after biofield treatment. FT-IR analysis of treated indole showed increase in frequency of N-H stretching vibrational peak by 6 cm-1 as compared to control sample. UV spectroscopy analysis showed no alteration in absorption wavelength (?max) of treated indole with respect to control. The present study showed that biofield has substantially affected the physical and thermal nature of indole.

Potential Impact of BioField Treatment on Atomic and Physical Characteristics of Magnesium

Journal: Vitamins & Minerals PDF

Published: 12-Aug-15 Volume: 4 Issue: 3

DOI:10.4172/2376-1318.1000129 ISSN: 2376-1318

Authors: Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Omprakash Latiyal and Snehasis Jana *

Abstract

Magnesium (Mg), present in every cell of all living organisms, is an essential nutrient and primarily responsible for catalytic reaction of over 300 enzymes. The aim of present study was to evaluate the effect of biofield treatment on atomic and physical properties of magnesium powder. Magnesium powder was divided into two parts denoted as control and treatment. Control part was remained as untreated and treatment part received biofield treatment. Both control and treated magnesium samples were characterized using X-ray diffraction (XRD), surface area and particle size analyzer. XRD data showed that biofield treatment has altered the lattice parameter, unit cell volume, density, atomic weight, and nuclear charge per unit volume of treated magnesium powder, as compared to control. In addition, the crystallite size of treated magnesium was significantly reduced up to 16.70, 16.70, and 28.59% on day 7, 41 and 63 respectively as compared to control. Besides this, the surface area of treated magnesium powder was increased by 36.5 and 10.72% on day 6 and 72 respectively, whereas it was reduced by 32.77% on day 92 as compared to control. In addition, biofield treatment has also altered the particle sizes d10, d50, and d99 (size, below which 10, 50, and 99% particles were present, respectively) as compared to control. Overall, data suggest that biofield treatment has substantially altered the atomic and physical properties of treated magnesium powder.

Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole

Journal: Medicinal Chemistry PDF

Published: 27-Jul-15 Volume: 5 Issue: 7

DOI:10.4172/2161-0444.1000283 ISSN: 2161-0444

Authors: Mahendra Kumar Trivedi, Shrikant Patil, Harish Shettigar, Khemraj Bairwa and Snehasis Jana*

Abstract

Metronidazole and tinidazole are widely used antimicrobial drugs against Gram-negative and Gram-positive anaerobic bacteria. The present study was aimed to evaluate the impact of biofield treatment on metronidazole and tinidazole using FT-IR and UV spectroscopy. The study was carried out in two groups i.e. control and treatment. Treatment groups were subjected to Mr. Trivedi’s biofield treatment while no treatment was given to control group. FT-IR spectrum of treated metronidazole showed the impact of biofield treatment on frequency of characteristic functional groups such as C=C (imidazole ring) stretching was appeared at lower frequency i.e. from 1600 cm-1 to 1553 cm-1. Likewise, NO2 asymmetric stretching and C-N symmetric stretching were appeared at higher wave number i.e. 1479 cm-1 to 1501 cm-1 and 1070 cm-1 to 1077 cm-1, respectively. FT-IR spectrum of tinidazole showed shifting in absorption peak of C-N stretching to higher wavenumber from 1002 cm-1 (control) to 1022 cm-1. The wavenumber of aromatic C=C bond (in imidazole) was shifted to lower frequency, which could be due to increases in conjugation effect. Further, increases in wavenumber of NO2 and C-N in treated sample suggested the increased force constant and bond strength as compared to control. Because of higher conjugation effect and increased bond strength, the molecule supposed to be more stable. The UV spectra of both metronidazole and tinidazole showed the similar patterns of lambda max (?max) with respect to their control. The FT-IR results of both drugs suggest that there was an impact of biofield treatment on atomic level of metronidazole and tinidazole, as compared to control.

Structural and Physical Properties of Biofield Treated Thymol and Menthol

Journal: Molecular Pharmaceutics & Organic Process Research PDF

Published: 09-Jul-15 Volume: 3 Issue: 2

DOI:10.4172/2329-9053.1000127 ISSN: 2329-9053

Authors: Mahendra Kumar Trivedi, Shrikant Patil, Rakesh K. Mishra and Snehasis Jana*

Abstract

Thymol and menthol are naturally occurring plant derived compounds, which have excellent pharmaceutical and antimicrobial applications. The aim of this work was to evaluate the impact of biofield energy on physical and structural characteristics of thymol and menthol. The control and biofield treated compounds (thymol and menthol) were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA), and Fourier Transform Infrared Spectroscopy (FT-IR). XRD study revealed increase in intensity of the XRD peaks of treated thymol, which was correlated to high crystallinity of the treated sample. The treated thymol showed significant increase in crystallite size by 50.01% as compared to control. However, the treated menthol did not show any significant change in crystallite size as compared to control. DSC of treated menthol showed minimal increase in melting temperature (45ºC) as compared to control (44ºC). The enthalpy (?H) of both the treated compounds (thymol and menthol) was decreased as compared to control samples which could be due the high energy state of the powders. TGA analysis showed that thermal stability of treated thymol was increased as compared to control; though no change in thermal stability was noticed in treated menthol. FT-IR spectrum of treated thymol showed increase in wave number of –OH stretching vibration peak (14 cm-1) as compared to control. Whereas, the FT-IR spectrum of treated menthol showed appearance of new stretching vibration peaks in the region of 3200-3600 cm-1 which may be attributed to the presence of hydrogen bonding in the sample as compared to control. Overall, the result showed that biofield treatment has substantially changed the structural and physical properties of thymol and menthol.

Characterization of Physical and Structural Properties of Aluminium Carbide Powder: Impact of Biofield Treatment

Journal: Aeronautics & Aerospace Engineering PDF

Published: 28-Aug-15 Volume: 4 Issue: 1

DOI:10.4172/2168-9792.1000142 ISSN: 2168-9792

Authors: Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Omprakash Latiyal and Snehasis Jana*

Abstract

Aluminium carbide (Al4C3) has gained extensive attention due to its abrasive and creep resistance properties. Aim of the present study was to evaluate the impact of biofield treatment on physical and structural properties of Al4C3 powder. The Al4C3 powder was divided into two parts i.e. control and treated. Control part was remained as untreated and treated part received biofield treatment. Subsequently, control and treated Al4C3 samples were characterized using X-ray diffraction (XRD), surface area analyser and Fourier transform infrared spectroscopy (FTIR). XRD data revealed that lattice parameter and unit cell volume of treated Al4C3 samples were increased by 0.33 and 0.66% respectively, as compared to control. The density of treated Al4C3 samples was reduced upto 0.65% as compared to control. In addition, the molecular weight and crystallite size of treated Al4C3 samples were increased upto 0.66 and 249.53% respectively as compared to control. Furthermore, surface area of treated Al4C3 sample was increased by 5% as compared to control. The FT-IR spectra revealed no significant change in absorption peaks of treated Al4C3 samples as compared to control. Thus, XRD and surface area results suggest that biofield treatment has substantially altered the physical and structural properties of treated Al4C3 powder.

Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characterization of Ammonium Acetate and Ammonium Chloride: An Impact of Biofield Treatment

Journal: Modern Chemistry & Applications PDF

Published: 18-Aug-15 Volume: 3 Issue: 3

DOI:10.4172/2329-6798.1000163 ISSN: 2329-6798

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Khemraj Bairwa and Snehasis Jana*

Abstract

Ammonium acetate and ammonium chloride are the white crystalline solid inorganic compounds having wide application in synthesis and analytical chemistry. The aim of present study was to evaluate the impact of biofield treatment on spectral properties of inorganic salt like ammonium acetate and ammonium chloride. The study was performed in two groups of each compound i.e., control and treatment. Treatment groups were received Mr. Trivedi’s biofield treatment. Subsequently, control and treated groups were evaluated using Fourier Transform Infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopy. FT-IR spectrum of treated ammonium acetate showed the shifting in wavenumber of vibrational peaks with respect to control. Like, the N-H stretching was shifted from 3024-3586 cm-1 to 3033-3606 cm-1, C-H stretching from 2826-2893 cm-1 to 2817-2881 cm-1, C=O asymmetrical stretching from 1660-1702 cm-1 to 1680-1714 cm-1, N-H bending from 1533-1563 cm-1 to 1506-1556 cm-1 etc. Treated ammonium chloride showed the shifting in IR frequency of three distinct oscillation modes in NH4 ion i.e., at ?1, 3010 cm-1 to 3029 cm-1; ?2, 1724 cm-1 to 1741 cm-1; and ?3, 3156 cm-1 to 3124 cm-1. The N-Cl stretching was also shifted to downstream region i.e., from 710 cm-1 to 665 cm-1 in treated ammonium chloride. UV spectrum of treated ammonium acetate showed the absorbance maxima (?max) at 258.0 nm that was shifted to 221.4 nm in treated sample. UV spectrum of control ammonium chloride exhibited two absorbance maxima (?max) i.e., at 234.6 and 292.6 nm, which were shifted to 224.1 and 302.8 nm, respectively in treated sample.

Overall, FT-IR and UV data of both compounds suggest an impact of biofield treatment on atomic level i.e., at force constant, bond strength, dipole moments and electron transition energy between two orbitals of treated compounds as compared to respective control.

Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment

Journal: Journal of Chromatography & Separation Techniques PDF

Published: 20-Aug-15 Volume: 6 Issue: 5

DOI:10.4172/2157-7064.1000282 ISSN: 2157-7064

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Khemraj Bairwa and Snehasis Jana*

Abstract

Disodium hydrogen orthophosphate is a water soluble white powder widely used as pH regulator and saline laxative. The sodium nitrate is a highly water soluble white solid, used in high blood pressure, dentinal hypersensitivity, and production of fertilizers. The present study was aimed to investigate the impact of biofield treatment on spectral properties of disodium hydrogen orthophosphate and sodium nitrate. The study was performed in two groups i.e., control and treatment of each compound. The treatment groups were subjected to Mr. Trivedi’s biofield treatment. The spectral properties of control and treated groups of both compounds were studied using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated disodium hydrogen orthophosphate showed the shifting in wavenumber of vibrational peaks (with respect to control) corresponding to O-H stretching from 2975 to 3357 cm-1, PO-H symmetrical stretching from 2359 to 2350 cm-1, O=P-OH deformation from 1717-1796 cm-1 to 1701-1735 cm-1, P=O asymmetric stretching from 1356 to 1260 cm-1 and P=O symmetric stretching from 1159 to 1132 cm-1, etc. Likewise, the FT-IR spectrum of sodium nitrate exhibited the shifting of vibrational frequency of N=O stretching from 1788 to 1648 cm-1 and NO3 asymmetric and symmetric stretchings from 1369 to 1381 cm-1 and 1340 to 1267 cm-1.

UV spectrum of treated disodium hydrogen orthophosphate revealed a negative absorbance; it may be due to decrease in UV absorbance as compared to control. UV spectrum of control sodium nitrate exhibited two absorbance maxima (?max) at 239.4 nm and 341.4 nm, which were altered to one absorbance maxima (?max) at 209.2 nm after biofield treatment.

Overall, the FT-IR and UV spectroscopic data of both compounds suggest an impact of biofield treatment on spectral properties with respect to force constant, bond strength, dipole moments and transition energy between two orbitals (ground state and excited state) as compared to respective control.

Contact Us

We're not around right now. But you can send us an email and we'll get back to you, asap.

Not readable? Change text. captcha txt

Start typing and press Enter to search